23 RISPERIDONE QUANTITATION AND CONFIRMATION BY LCMS	Page 1 of 4
Division of Forensic Science	Amendment Designator:
TOXICOLOGY TECHNICAL PROCEDURES MANUAL	Effective Date: 31-March-2004

23 RISPERIDONE QUANTITATION AND CONFIRMATION BY LCMS

23.1 Summary

23.1.1 Risperidone and its proprietary internal standard, R68808, are extracted from biological samples with an acetonitrile precipitation and analyzed by high performance liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS).

23.2 Specimen Requirements

23.2.1 One mL blood, fluid or tissue homogenate.

23.3 Reagents and Standards

- 23.3.1 Ammonium acetate
- 23.3.2 Acetic Acid
- 23.3.3 Methanol
- 23.3.4 Acetonitrile
- 23.3.5 Risperidone (Janssen Pharmaceuticals)
- 23.3.6 R68808 (Janssen Pharmaceuticals, internal standard)

23.4 Solutions, Internal Standard, Calibrators and Controls

- 23.4.1 5 mM Ammonium Acetate: Weight 0.19 g ammonium acetate. Transfer to 500 mL volumetric flask and QS to volume with dH₂O
- 23.4.2 Working standard solution for risperidone (0.01 mg/mL)
 - 23.4.2.1 Pipet 100 μl of 1 mg/mL stock solution of risperidone into a 10 mL volumetric flask and QS to volume with acetonitrile
- 23.4.3 Quality Control (QC) standard solution of risperidone (0.01 mg/mL)
 - 23.4.3.1 Pipet 100 µl of separate 1 mg/mL stock solution of risperidone (different preparation than calibrators) into a 10 mL volumetric flask and QS to volume with acetonitrile
- 23.4.4 Internal standard working solution
 - 23.4.4.1 0.01 mg/mL R68808: Pipet 100 μ L of 1 mg/mL R68808 stock solution into 10 mL volumetric flask and QS to volume with acetonitrile
- 23.4.5 To prepare the calibration curve, pipet the following volumes of the 0.01 mg/mL risperidone working solution into appropriately labeled 16 x 125 mm screw cap test tubes. Add 1 mL blank blood to obtain the final concentrations listed below.

23 RISPERIDONE QUANTITATION AND CONFIRMATION BY LCMS	Page 2 of 4		
Division of Forensic Science	Amendment Designator:		
TOXICOLOGY TECHNICAL PROCEDURES MANUAL	Effective Date: 31-March-2004		

Amount of Standard (μL)	Final concentration of risperidone (mg/L)
100	1
50	0.5
20	0.2
10	0.1
5	0.05

- 23.4.6 Controls
 - 23.4.6.1 Risperidone Control
 - 23.4.6.1.1 Pipet 50 μ L of the 0.01 mg/mL risperidone QC solution into an appropriately labeled tube. Add 1 mL blank blood to achieve final concentration of 0.5 mg/L.
 - 23.4.6.2 Negative control. Blood bank blood or equivalent determined not to contain risperidone.

23.5 Apparatus

- 23.5.1 Test tubes, 16 x 125 mm, round bottom, borosilicate glass with Teflon caps
- 23.5.2 Test tubes, 16 x 114 mm, glass centrifuge, conical bottom
- 23.5.3 Centrifuge capable of 2000-3000 rpm
- 23.5.4 Nitrogen evaporator with heating block
- 23.5.5 Vortex mixer
- 23.5.6 GC autosampler vials with inserts
- 23.5.7 LC/MS: Agilent Model 1100 LC-MSD
 - 23.5.7.1 LCMS Instrument Conditions. The following instrument conditions may be modified to adjust or improve separation and sensitivity.
 - 23.5.7.1.1 Elution conditions:
 - 23.5.7.1.1.1 Column: Agilent Hypersil BDS 125 mm X 3 mm, 3 µM particle size
 - 23.5.7.1.1.2 Column thermostat: 35° C
 - 23.5.7.1.1.3 Solvent A: 5 mM ammonium acetate (500 mL) containing 150 μL acetic acid
 - 23.5.7.1.1.4 Solvent B: acetonitrile
 - 23.5.7.1.1.5 Isocratic elution, stop time: 4.00 min

Time	Solv. B	Flow
0.00	80	0.6

23 RISPERIDONE QUANTITATION AND CONFIRMATION BY LCMS Page 3 of 4 Division of Forensic Science Amendment Designator:

Effective Date: 31-March-2004

23.5.7.1.2 Spray Chamber

TOXICOLOGY TECHNICAL PROCEDURES MANUAL

 $\begin{array}{lll} 23.5.7.1.2.1 & Ionization Mode: Electrospray \\ 23.5.7.1.2.2 & Gas Temperature: 300^{\circ} C \\ 23.5.7.1.2.3 & Drying Gas (N_2): 11.8 L/min \\ 23.5.7.1.2.4 & Nebulizer pressure: 30 psig \\ 23.5.7.1.2.5 & Vcap (Positive): 2500 V \\ \end{array}$

23.5.7.1.3 Selected Ion Monitoring (quantitation ions)

Time	Group Name	SIM	Frag-	Gain	SIM	Actual
(min)		Ion	Mentor	EMV	Resol.	Dwell
0.00	risperidone	191	115	1.0	High	114
		411				114
		<u>412</u>				114
	RS68808	201				114
		421				114

23.5.7.1.3.1 Polarity: Positive 23.5.7.1.3.2 Injection volume: 4 μL

23.6 Procedure

- 23.6.1 Label clean 16 x 125 mm screw cap tubes appropriately with calibrators, controls and case sample IDs.
- 23.6.2 Prepare calibrators and controls.
- 23.6.3 Add 1 mL case specimens to the appropriately labeled tubes.
- 23.6.4 Add 50 µL 0.01 mg/mL R68808 internal standard working solution to each tube.
- 23.6.5 Slowly, add dropwise 2 mL cold (freezer temperature) acetonitrile to each tube while vortexing. Continous vortexing, not mere mixing, is essential.
- 23.6.6 Vortex an additional 30 seconds.
- 23.6.7 Place tubes in freezer for at least 30 minutes to facilitate separation.
- 23.6.8 Centrifuge at approximately 2500 rpm for 15 minutes.
- 23.6.9 Transfer top acetonitrile layer to clean conical bottom tubes taking care not to transfer any lower layers.
- 23.6.10 Evaporate to dryness at approximately 50° C under nitrogen.
- 23.6.11 Reconstitute samples in 100 µL acetonitrile. Vortex briefly. Transfer to GC microvials.

23.7 Calculation

23.7.1 Drug concentrations are calculated by linear regression analysis using the ChemStation software.

23 RISPERIDONE QUANTITATION AND CONFIRMATION BY		Page 4 of 4		
	LCMS			
	Division of Forensic Science	Amendment Designator:		
	TOXICOLOGY TECHNICAL PROCEDURES MANUAL	Effective Date: 31-March-2004		
23.8	Quality Control and Reporting			
	23.8.1 See Toxicology Quality Guidelines			
23.9	REFERENCES			
	23.9.1 J Pearson and R Steiner, in-house development.			